Mixed Precision Iterative Refinement Techniques for the Solution of Dense Linear Systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Precision Iterative Refinement Techniques for the Solution of Dense Linear Systems

By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. The approach presented here can apply not only to conventional processors but also to exotic technologies such as Field Programmable Gate Arrays (FPGA), Graphical P...

متن کامل

Iterative Solution of Dense Linear Systems

Integral equation methods have been used with great success in electromagnetic scattering calculations and in other problems involving unbounded computational domains. Their application is in many cases limited by the storage requirements of dense matrices and also by the rapidly increasing computational time. However, the use of iterative solvers and special methods for computing the matrix-ve...

متن کامل

Mixed accelerated techniques for solving dense linear systems

The rounding-error analysis of Gaussian elimination shows that the method is stable only when the elements of the matrix do not grow excessively in the course of the reduction. Usually such growth is prevented by interchanging rows and columns of the matrix so that the pivot element is acceptably large. In this paper firstly we introduce the Boosting LU factorization method based on a rank one ...

متن کامل

GPU-Accelerated Asynchronous Error Correction for Mixed Precision Iterative Refinement

In hardware-aware high performance computing, blockasynchronous iteration and mixed precision iterative refinement are two techniques that are applied to leverage the computing power of SIMD accelerators like GPUs. Although they use a very different approach for this purpose, they share the basic idea of compensating the convergence behaviour of an inferior numerical algorithm by a more efficie...

متن کامل

Comparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems

Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Journal of High Performance Computing Applications

سال: 2007

ISSN: 1094-3420,1741-2846

DOI: 10.1177/1094342007084026